Development of the optic nerve in Xenopus laevis
نویسندگان
چکیده
Development of the Xenopus laevis optic nerve was studied by light and electron microscopy from embryonic stage 26, before the retina has formed, to juveniles, 8 months postmetamorphic. Low-power EM photographs of sections through the retinal optic nerve (RON), middle optic nerve (MON) and chiasmatic optic nerve (CON) were prepared at different stages and the areas containing large axons (0-5 ^m) were traced in optic nerve reconstructions. Ordering of fibre size along a dorsoventral axis was noted in the embryonic nerve, and this pattern persisted throughout development. Most large fibres, myelinated and unmyelinated, occupy an eccentric dorsocentral position in the MON while small axons are seen in a ventral peripheral crescent. In the CON, the dorsal one third to one half is occupied by large fibres while the ventral CON contains small fibres exclusively. If, as assumed, large axons are older than small axons (0-1-0-3 ywm), then patterns of large and small axons along the nerve might reveal a chronotopic fibre ordering. Chronotopic ordering was confirmed by autoradiographic analysis of the distribution of old, labelled fibres and young, unlabelled newly arriving fibres in optic nerves between stage 51 and 57. The young-old labelling pattern corresponds to the small and large axon patterns respectively, in all sections of the optic nerve. Chronotopic ordering of fibres in the developing optic nerve can be explained, in part, by the dorsoventral asymmetric marginal growth of the developing retina and the phenomenon of fibre following as ganglion cell axons join near neighbour fascicles in the retina, converge at the optic disc and grow through the optic nerve.
منابع مشابه
Expression of hsp90 Alpha and hsp90 Beta during Xenopus laevis Embryonic Development
Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 alpha and hsp90 beta, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 alpha and hsp90 beta genes in Xenopus...
متن کاملThe S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .
Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...
متن کاملIntegrin Linked Kinase (X-ILK) Function during Embryonic Development and within Adult Tissues of Xenopus laevis
Integrin linked kinase (ILK) is a serine/threonine protein kinase implicated in the phosphatidylinositol 3’kinase (PI3’K) pathway. Integrin linked kinase has been investigated in different organisms such as mammalian systems (human, mice, rat), insects (Drosophila) and nematodes (Cenorhabditis elegans), however to date little data regarding ILK research on amphibians has been reported. In...
متن کاملInteractions of light and gravity reception with magnetic fields in Xenopus laevis.
Tadpoles of Xenopus laevis are shown to respond to magnetic fields using a gravity-related test paradigm. They exhibit a directional selectivity with respect to angular variations of the inclination of low-intensity magnetic fields. This response is abolished when the optic nerves of the tadpole are transected, indicating that the peripheral optical system is involved in the detection of magnet...
متن کامل